All Issue

2022 Vol.15, Issue 2 Preview Page

Original Article

30 June 2022. pp. 45-56
Arun, S. S. and Iyer, G. N. (2020). On the Analysis of COVID19-novel Corona Viral Disease Pandemic Spread Data Using Machine Learning Techniques. In 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE. pp.1222-1227. 10.1109/ICICCS48265.2020.9121027
Gumbel, E. J. (1935). Les Valeurs Extremes Des Distributions Statis-tiques. Annales l’institut Henri Poincar’e. 5(2): 115-158.
Hochreiter, S. and Schmidhuber, J. (1997). Long Short-term Memory. Neural Computation. 9(8): 1735-1780.
Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: Principles and Practice. OTexts.
Jang, O. J. and Moon, Y. I. (2022). Predicting the Amount of Water Shortage during Dry Seasons Using Deep Neural Network with Data from RCP Scenarios. Journal of Korea Water Resources Association. 55(2): 121-133.
Jung, S. H., Lee, D. E., and Lee, K. S. (2018). Prediction of River Water Level Using Deep-learning Open Library. Journal of the Korean Society of Hazard Mitigation. 18(1): 1-11.
Kim, D., Park, J., and Choi, J. (2014). A Comparative Study Between Stock Price Prediction Models Using Sentiment Analysis and Machine Learning Based on SNS and News Articles. Journal of Information Technology Services. 13(3): 221-233.
Kim, J. H., Kim, K. T., and Han, J. K. (2015). Big Data Analysis based on Deep Learning for Baseball Game Data. Journal of Korea Institute of Communication Sciences. 2015(11): 262-265.
Kim, J., Kang, M. S., and Kim, S. H. (2019). Comparing the Performance of Artificial Neural Networks and Long Short-Term Memory Networks for Rainfall-runoff Analysis. In Proceedings of the Korea Water Resources Association Conference. Korea Water Resources Association. pp.320-320.
Kim, Y. and Kim, Y. M. (2021). Predicting Game Results using Machine Learning and Deriving Strategic Direction from Variable Importance. Journal of Korea Game Society. 21(4): 3-12.
Korea Meteorological Administration (KMA) (2021). Korea Climate Change Assessment Report 2021. Seoul: KMA.
Lee, S. Y., Yoo, H. J., and Lee, S. O. (2021). Role of Unstructured Data on Water Surface Elevation Prediction with LSTM: Case Study on Jamsu Bridge, Korea. Journal of Korea Water Resources Association. 54(spc1): 1195-1204.
Lee, W. (2017). A Deep Learning Analysis of the KOSPI’s Directions. Journal of the Korean Data and Information Science Society. 28(2): 287-295.
Ministry of Land Infrastructure and Transport (MOLIT) (2016). National Water Resources Plan (2011~2020) (3rd revision). Sejong: MOLIT.
Oh, J. H., Ryu, K. S., Bok, J. S., Jang, Y. S., Bae, Y. D., and Lee, B. G. (2019). Water Supply-and-Demand Analysis Considering the Actual Water-Use System in the East Basin of Han River. Journal of the Korean Society of Hazard Mitigation. 19(7): 529-543. 10.9798/KOSHAM.2019.19.7.529
Ruxton, G. D. (2006). The Unequal Variance T-Test is an Underused Alternative to Student’s T-Test and the Mann-Whitney U Test. Behavioral Ecology. 17(4): 688-690.
Seo, Y. J., Moon, H. W., and Woo, Y. T. (2019). A Win/Lose Prediction Model of Korean Professional Baseball Using Machine Learning Technique. Journal of the Korea Society of Computer and Information. 24(2): 17-24.
Song, Y. J., Lee, J. W., and Lee, J. W. (2017). A Design and Implementation of Deep Learning Model for Stock Prediction Using Tensorflow. KIISE Transactions on Computing Practices. 23(11): 799-801.
Tran, Q. T., Hao, L., and Trinh, Q. K. (2016). A Novel Procedure to Model and Forecast Mobile Communication Traffic by ARIMA/GARCH Combination Models. In 2016 International Conference on Modeling. Simulation and Optimization Technologies and Applications (MSOTA2016). Atlantis Press. 10.2991/msota-16.2016.8
Weibull, W. (1951). A Statistical Distribution Function of wide Applicability. Journal of Applied Mechanics. 10.1115/1.4010337
Yoo, H. J., Lee, S. O., Choi, S. H., and Park, M. H. (2020). Development of a Data-Driven Model for Forecasting Outflow to Establish a Reasonable River Water Management System. Journal of Korean Society of Disaster and Security. 13(4): 75-92.
Yoo, H., Lee, S. O., Choi, S., and Park, M. (2019). A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge. Journal of Korean Society of Disaster and Security. 12(2): 73-82.
Zhang, D., Martinez, N., Lindholm, G., and Ratnaweera, H. (2018). Manage Sewer In-line Storage Control Using Hydraulic Model and Recurrent Neural Network. Water Resources Management. 32(6): 2079-2098.

Korean References Translated from the English

국토교통부 (2016). 수자원장기종합계획(2001~2020) 제3차 수정계획. 세종: 국토교통부.
기상청 (2021). 한국 기후변화 평가보고서 2021 -기후변화 과학적 근거-. 서울: 기상청.
김동영, 박제원, 최재현 (2014). SNS 와 뉴스기사의 감성분석과 기계학습을 이용한 주가예측 모형 비교 연구. 한국 IT 서비스학회지. 13(3): 221-233.
김용우, 김영민 (2021). 기계학습을 활용한 게임승패 예측 및 변수중요도 산출을 통한 전략방향 도출. 한국게임학회 논문지. 21(4): 3-12.
김종훈, 김경태, 한종기 (2015). Deep Learning 기반 기계학습 알고리즘을 이용한 야구 경기 Big Data 분석. 한국통신학회 학술대회논문집. 2015(11): 262-265.
서영진, 문형우, 우용태 (2019). 기계학습 기법을 이용한 한국프로야구 승패 예측 모델. 한국컴퓨터정보학회논문지. 24(2): 17-24.
송유정, 이종우 (2017). 텐서플로우를 이용한 주가 변동 예측 딥러닝 모델 설계 및 개발. 한국정보과학회 학술발표논문집. pp.799-801.
오지환, 류경식, 복정수, 장연석, 배영대, 이봉국 (2019). 실제 물이용 체계를 고려한 한강 동해 권역 물수급 평가. 한국방재학회 논문집. 19(7): 529-543.
유형주, 이승오, 최서혜, 박문형 (2019). 시계열 자료의 예측을 위한 자료 기반 신경망 모델에 관한 연구: 한강대교 수위예측 적용. 한국방재안전학회논문집. 12(2): 73-82.
유형주, 이승오, 최서혜, 박문형 (2020). 합리적인 하천수 관리체계 구축을 위한 자료기반 방류량 예측모형 개발. 한국방재안전학회 논문집. 13(4): 75-92.
이승연, 유형주, 이승오 (2021). LSTM 기법을 활용한 수위 예측 알고리즘 개발 시 비정형자료의 역할에 관한 연구: 잠수교 사례. 한국수자원학회 논문집. 54: 1195-1204.
이우식 (2017). 딥러닝분석과 기술적 분석 지표를 이용한 한국 코스피주가지수 방향성 예측. 한국데이터정보과학회지. 28(2): 287-295.
정성호, 이대업, 이경상 (2018). 딥러닝 오픈 라이브러리를 이용한 하천수위 예측. 한국방재학회논문집. 18(1): 1-11.
  • Publisher :Korean Society of Disaster and Security
  • Publisher(Ko) :한국방재안전학회
  • Journal Title :Journal of Korean Society of Disaster and Security
  • Journal Title(Ko) :한국방재안전학회 논문집
  • Volume : 15
  • No :2
  • Pages :45-56
  • Received Date :2022. 04. 10
  • Revised Date :2022. 04. 14
  • Accepted Date : 2022. 06. 10