All Issue

2022 Vol.15, Issue 2 Preview Page

Original Article

30 June 2022. pp. 45-56
Abstract
References
1
Arun, S. S. and Iyer, G. N. (2020). On the Analysis of COVID19-novel Corona Viral Disease Pandemic Spread Data Using Machine Learning Techniques. In 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE. pp.1222-1227. 10.1109/ICICCS48265.2020.9121027
2
Gumbel, E. J. (1935). Les Valeurs Extremes Des Distributions Statis-tiques. Annales l’institut Henri Poincar’e. 5(2): 115-158.
3
Hochreiter, S. and Schmidhuber, J. (1997). Long Short-term Memory. Neural Computation. 9(8): 1735-1780.
4
Hyndman, R. J. and Athanasopoulos, G. (2018). Forecasting: Principles and Practice. OTexts.
5
Jang, O. J. and Moon, Y. I. (2022). Predicting the Amount of Water Shortage during Dry Seasons Using Deep Neural Network with Data from RCP Scenarios. Journal of Korea Water Resources Association. 55(2): 121-133.
6
Jung, S. H., Lee, D. E., and Lee, K. S. (2018). Prediction of River Water Level Using Deep-learning Open Library. Journal of the Korean Society of Hazard Mitigation. 18(1): 1-11.
7
Kim, D., Park, J., and Choi, J. (2014). A Comparative Study Between Stock Price Prediction Models Using Sentiment Analysis and Machine Learning Based on SNS and News Articles. Journal of Information Technology Services. 13(3): 221-233.
8
Kim, J. H., Kim, K. T., and Han, J. K. (2015). Big Data Analysis based on Deep Learning for Baseball Game Data. Journal of Korea Institute of Communication Sciences. 2015(11): 262-265.
9
Kim, J., Kang, M. S., and Kim, S. H. (2019). Comparing the Performance of Artificial Neural Networks and Long Short-Term Memory Networks for Rainfall-runoff Analysis. In Proceedings of the Korea Water Resources Association Conference. Korea Water Resources Association. pp.320-320.
10
Kim, Y. and Kim, Y. M. (2021). Predicting Game Results using Machine Learning and Deriving Strategic Direction from Variable Importance. Journal of Korea Game Society. 21(4): 3-12.
11
Korea Meteorological Administration (KMA) (2021). Korea Climate Change Assessment Report 2021. Seoul: KMA.
12
Lee, S. Y., Yoo, H. J., and Lee, S. O. (2021). Role of Unstructured Data on Water Surface Elevation Prediction with LSTM: Case Study on Jamsu Bridge, Korea. Journal of Korea Water Resources Association. 54(spc1): 1195-1204.
13
Lee, W. (2017). A Deep Learning Analysis of the KOSPI’s Directions. Journal of the Korean Data and Information Science Society. 28(2): 287-295.
14
Ministry of Land Infrastructure and Transport (MOLIT) (2016). National Water Resources Plan (2011~2020) (3rd revision). Sejong: MOLIT.
15
Oh, J. H., Ryu, K. S., Bok, J. S., Jang, Y. S., Bae, Y. D., and Lee, B. G. (2019). Water Supply-and-Demand Analysis Considering the Actual Water-Use System in the East Basin of Han River. Journal of the Korean Society of Hazard Mitigation. 19(7): 529-543. 10.9798/KOSHAM.2019.19.7.529
16
Ruxton, G. D. (2006). The Unequal Variance T-Test is an Underused Alternative to Student’s T-Test and the Mann-Whitney U Test. Behavioral Ecology. 17(4): 688-690.
17
Seo, Y. J., Moon, H. W., and Woo, Y. T. (2019). A Win/Lose Prediction Model of Korean Professional Baseball Using Machine Learning Technique. Journal of the Korea Society of Computer and Information. 24(2): 17-24.
18
Song, Y. J., Lee, J. W., and Lee, J. W. (2017). A Design and Implementation of Deep Learning Model for Stock Prediction Using Tensorflow. KIISE Transactions on Computing Practices. 23(11): 799-801.
19
Tran, Q. T., Hao, L., and Trinh, Q. K. (2016). A Novel Procedure to Model and Forecast Mobile Communication Traffic by ARIMA/GARCH Combination Models. In 2016 International Conference on Modeling. Simulation and Optimization Technologies and Applications (MSOTA2016). Atlantis Press. 10.2991/msota-16.2016.8
20
Weibull, W. (1951). A Statistical Distribution Function of wide Applicability. Journal of Applied Mechanics. 10.1115/1.4010337
21
Yoo, H. J., Lee, S. O., Choi, S. H., and Park, M. H. (2020). Development of a Data-Driven Model for Forecasting Outflow to Establish a Reasonable River Water Management System. Journal of Korean Society of Disaster and Security. 13(4): 75-92.
22
Yoo, H., Lee, S. O., Choi, S., and Park, M. (2019). A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge. Journal of Korean Society of Disaster and Security. 12(2): 73-82.
23
Zhang, D., Martinez, N., Lindholm, G., and Ratnaweera, H. (2018). Manage Sewer In-line Storage Control Using Hydraulic Model and Recurrent Neural Network. Water Resources Management. 32(6): 2079-2098.

Korean References Translated from the English

24
국토교통부 (2016). 수자원장기종합계획(2001~2020) 제3차 수정계획. 세종: 국토교통부.
25
기상청 (2021). 한국 기후변화 평가보고서 2021 -기후변화 과학적 근거-. 서울: 기상청.
26
김동영, 박제원, 최재현 (2014). SNS 와 뉴스기사의 감성분석과 기계학습을 이용한 주가예측 모형 비교 연구. 한국 IT 서비스학회지. 13(3): 221-233.
27
김용우, 김영민 (2021). 기계학습을 활용한 게임승패 예측 및 변수중요도 산출을 통한 전략방향 도출. 한국게임학회 논문지. 21(4): 3-12.
28
김종훈, 김경태, 한종기 (2015). Deep Learning 기반 기계학습 알고리즘을 이용한 야구 경기 Big Data 분석. 한국통신학회 학술대회논문집. 2015(11): 262-265.
29
서영진, 문형우, 우용태 (2019). 기계학습 기법을 이용한 한국프로야구 승패 예측 모델. 한국컴퓨터정보학회논문지. 24(2): 17-24.
30
송유정, 이종우 (2017). 텐서플로우를 이용한 주가 변동 예측 딥러닝 모델 설계 및 개발. 한국정보과학회 학술발표논문집. pp.799-801.
31
오지환, 류경식, 복정수, 장연석, 배영대, 이봉국 (2019). 실제 물이용 체계를 고려한 한강 동해 권역 물수급 평가. 한국방재학회 논문집. 19(7): 529-543.
32
유형주, 이승오, 최서혜, 박문형 (2019). 시계열 자료의 예측을 위한 자료 기반 신경망 모델에 관한 연구: 한강대교 수위예측 적용. 한국방재안전학회논문집. 12(2): 73-82.
33
유형주, 이승오, 최서혜, 박문형 (2020). 합리적인 하천수 관리체계 구축을 위한 자료기반 방류량 예측모형 개발. 한국방재안전학회 논문집. 13(4): 75-92.
34
이승연, 유형주, 이승오 (2021). LSTM 기법을 활용한 수위 예측 알고리즘 개발 시 비정형자료의 역할에 관한 연구: 잠수교 사례. 한국수자원학회 논문집. 54: 1195-1204.
35
이우식 (2017). 딥러닝분석과 기술적 분석 지표를 이용한 한국 코스피주가지수 방향성 예측. 한국데이터정보과학회지. 28(2): 287-295.
36
정성호, 이대업, 이경상 (2018). 딥러닝 오픈 라이브러리를 이용한 하천수위 예측. 한국방재학회논문집. 18(1): 1-11.
Information
  • Publisher :Korean Society of Disaster and Security
  • Publisher(Ko) :한국방재안전학회
  • Journal Title :Journal of Korean Society of Disaster and Security
  • Journal Title(Ko) :한국방재안전학회 논문집
  • Volume : 15
  • No :2
  • Pages :45-56
  • Received Date :2022. 04. 10
  • Revised Date :2022. 04. 14
  • Accepted Date : 2022. 06. 10