All Issue

2024 Vol.17, Issue 4 Preview Page

Case Study

31 December 2024. pp. 51-62
Abstract
References
1

Aivaliotis, P., K. Georgoulias, Z. Arkouli, and S. Makris. (2019). Methodology for Enabling Digital Twin Using Advanced Physics-Based Modelling in Predictive Maintenance. Procedia CIRP. 81: 417-422.

10.1016/j.procir.2019.03.072
2

Ansari, F., R. Glawar, and T. Nemeth. (2019). PriMa: A Prescriptive Maintenance Model for Cyber-Physical Production Systems. International Journal of Computer Integrated Manufacturing. 32(4-5): 482-503.

10.1080/0951192X.2019.1571236
3

Boje, C., A. Guerriero, S. Kubicki, and Y. Rezgui. (2020). Towards a Semantic Construction Digital Twin: Directions for Future Research. Automation in Construction. 114: 103179.

10.1016/j.autcon.2020.103179
4

Bolton, A., L. Butler, I. Dabson, M. Enzer, M. Evans, T. Fenemore, and J. Whyte. (2018). The Gemini Principles (CDBB_ REP_006). Cambridge, UK.

5

Booyse, W., D. N. Wilke, and S. Heyns. (2020). Deep Digital Twins for Detection, Diagnostics and Prognostics. Mechanical Systems and Signal Processing. 140: 106612.

10.1016/j.ymssp.2019.106612
6

BSI (British Standards Institution). (2018). BS EN ISO 19650-1; Organization and Digitization of Information about Buildings and Civil Engineering Works, including Building Information Modelling (BIM) - Information Management Using Building Information Modelling. Part 1, Concepts and Principles. Retrieved from https://www.iso.org/obp/ui/#iso:std:iso:19650:-1:ed-1:v1:en

7

Byun, N., W. S. Han, Y. W. Kwon, and Y. J. Kang. (2021). Development of BIM-Based Bridge Maintenance System Considering Maintenance Data Schema and Information System. Sustainability. 13(9): 4858.

10.3390/su13094858
8

Chakraborty, S. and S. Adhikari. (2021). Machine Learning Based Digital Twin for Dynamical Systems with Multiple Time-Scales. Computers and Structures. 243: 106410.

10.1016/j.compstruc.2020.106410
9

Cimino, C., E. Negri, and L. Fumagalli. (2019). Review of Digital Twin Applications in Manufacturing. Computers in Industry. 113: 103130.

10.1016/j.compind.2019.103130
10

Cuong, N. D., M. Kang, D. Jang, and C. Shim. (2022). Developing Mixed Reality-Based Digital Twin Model for Bridge Maintenance System. Proceedings of the 22nd International Conference on Construction Applications of Virtual Reality.

11

Dan, D., Y. Ying, and L. Ge. (2022). Digital Twin System of Bridges Group Based on Machine Vision Fusion Monitoring of Bridge Traffic Load. IEEE Transactions on Intelligent Transportation Systems. 23(11): 22190-22205.

10.1109/TITS.2021.3130025
12

Dang, H. V., M. Tatipamula, and H. X. Nguyen. (2022). Cloud-Based Digital Twinning for Structural Health Monitoring Using Deep Learning. IEEE Transactions on Industrial Informatics. 18(6): 3820-3830.

10.1109/TII.2021.3115119
13

Davtalab, O. (2017). Benefits of Real-Time Data Driven BIM for FM Departments in Operations Control and Maintenance. In Congress on Computing in Civil Engineering, Proceedings. American Society of Civil Engineers (ASCE). 202-210.

10.1061/9780784480823.025
14

Errandonea, I., S. Beltrán, and S. Arrizabalaga. (2020). Digital Twin for Maintenance: A Literature Review. Computers in Industry. 123(11): 103316.

10.1016/j.compind.2020.103316
15

Evans, S., C. Savian, A. Burns, and C. Cooper. (2019). Digital Twins for the Built Environment. Retrieved from https://www.theiet.org/impact-society/factfiles/built-environment-factfiles/digital-twins-for-the-built-environment/

16

Fang, Z., Q. Lu, X. Xie, A. K. Parlikad, J. Schooling, and M. Pitt. (2022). Definitions and Principles of Digital Twins. In Digital Twins in the Built Environment. ICE Publishing. 5-27.

10.1680/dtbe.65802.005
17

Febrianto, E., L. Butler, M. Girolami, and F. Cirak. (2021). Digital Twinning of Self-Sensing Structures Using the Statistical Finite Element Method. ArXiv. https://doi.org/10.48550/arXiv.2103.13729

10.1017/dce.2022.28
18

Franciosi, M., M. Kasser, and M. Viviani. (2024). Digital Twins in Bridge Engineering for Streamlined Maintenance and Enhanced Sustainability. Automation in Construction. 168(Part A): 105834.

10.1016/j.autcon.2024.105834
19

Gao, Y., G. Xiong, Z. Hu, and C. Chai. (2024). Bridge Digital Twin for Practical Bridge Operation and Maintenance by Integrating GIS and BIM. Buildigs. 14(12): 3731.

10.3390/buildings14123731
20

Gordon, C. A. K., B. Burnak, M. Onel, and E. N. Pistikopoulos. (2020). Data-Driven Prescriptive Maintenance: Failure Prediction Using Ensemble Support Vector Classification for Optimal Process and Maintenance Scheduling. Industrial and Engineering Chemistry Research. 59(44): 19607-19622.

10.1021/acs.iecr.0c03241
21

Grieves, M. (2014). Digital Twin: Manufacturing Excellence through Virtual Factory Replication. White Paper (March). 1-7. Retrieved from https://www.researchgate.net/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory_Replication

22

Gürdür Broo, D., M. Bravo-Haro, and J. Schooling. (2022). Design and Implementation of a Smart Infrastructure Digital Twin. Automation in Construction. 136: 104171.

10.1016/j.autcon.2022.104171
23

He, Z., W. Li, H. Salehi, H. Zhang, H. Zhou, and P. Jiao. (2022). Integrated Structural Health Monitoring in Bridge Engineering. Automation in Construction. 136: 104168.

10.1016/j.autcon.2022.104168
24

Heng, J., L. Lai, Y. Dong, S. Kaewunruen, and C. Baniotopoulos. (2024). Digital Twin for Intelligent Maintenance Towards Sustainable Bridges. Bridge Maintenance, Safety, Management, Digitalization and Sustainability - Proceedings of the 12th International Conference on Bridge Maintenance, Safety and Management (IABMAS 2024). 693-700.

10.1201/9781003483755-80
25

Hielscher, T., S. Khalil, N. Virgona, and S. A. Hadigheh. (2023). A Neural Network Based Digital Twin Model for the Structural Health Monitoring of Reinforced Concrete Bridges. Structures. 57: 105248.

10.1016/j.istruc.2023.105248
26

Jang, J. H., H. H. An, S. H. Lee, and J. H. Jung. (2023). Organize Real-Time Monitoring Data and Link to Digital Twins for Cable Bridge. Proceedings of the KSCE 2023 Convention. 93-94.

27

Jeon, C. H., C. S. Shim, Y. H. Lee, and J. Schooling. (2024). Prescriptive Maintenance of Prestressed Concrete Bridges considering Digital Twin and Key Performance Indicator. Engineering Structures. 302: 117383.

10.1016/j.engstruct.2023.117383
28

Jeon, C.-H., Nguyen, D.-C., Roh, G., and Shim, C.-S. (2023). Development of BrIM-Based Bridge Maintenance System for Existing Bridges. Buildings. 13(9): 2332.

10.3390/buildings13092332
29

JSCE (Japan Society of Civil Engineers). (2007). Standard Specifications for Concrete Structures - 2007; Maintenance. Retrieved from https://www.jsce-int.org/system/files/JGC15_Standard_Specifications_Design_1.0.pdf

30

Kaewunruen, S., J. Sresakoolchai, W. Ma, and O. Phil-Ebosie. (2021). Digital Twin Aided Vulnerability Assessment and Risk-Based Maintenance Planning of Bridge Infrastructures Exposed to Extreme Conditions. Sustainability. 13(4): 1-19.

10.3390/su13042051
31

Kang, J. S., K. Chung, and E. J. Hong. (2021). Multimedia Knowledge-Based Bridge Health Monitoring Using Digital Twin. Multimedia Tools and Applications. 80: 34609-34624.

10.1007/s11042-021-10649-x
32

Kim, J., Y. Ahn, and H. Yeo. (2016). A Comparative Study of Time-Based Maintenance and Condition-Based Maintenance for Optimal Choice of Maintenance Policy. Structure and Infrastructure Engineering. 12(12): 1525-1536.

10.1080/15732479.2016.1149871
33

Kim, Y.-W., S. Yoo, H. Lee, and S. H. Kim. (2020). Characterization of Digital Twin. Retrieved from https://www.researchgate.net/publication/353930234_Characterization_of_Digital_Twin

34

Koutamanis, A. (2020). Dimensionality in BIM: Why BIM Cannot Have More Than Four Dimensions? Automation in Construction. 114: 103153.

10.1016/j.autcon.2020.103153
35

Kritzinger, W., M. Karner, G. Traar, J. Henjes, and W. Sihn. (2018). Digital Twin in Manufacturing: A Categorical Literature Review and Classification. IFAC-PapersOnLine. 51(11): 1016-1022.

10.1016/j.ifacol.2018.08.474
36

Lai, X., Z. Kan, W. Sun, X. Song, B. Tian, and T. Yuan. (2024). Digital Twin-Based Non-Destructive Testing for Structural Health Monitoring of Bridges. Nondestructive Testing and Evaluation. 39(1): 57-74.

10.1080/10589759.2023.2239434
37

Lin, K., Y. L. Xu, X. Lu, Z. Guan, and J. Li. (2021). Digital Twin-Based Collapse Fragility Assessment of a Long-Span Cable-Stayed Bridge under Strong Earthquakes. Automation in Construction. 123: 103547.

10.1016/j.autcon.2020.103547
38

Liu, Z., N. Meyendorf, and N. Mrad. (2018). The Role of Data Fusion in Predictive Maintenance Using Digital Twin. In AIP Conference Proceedings. American Institute of Physics Inc. 1949(1): 020023.

10.1063/1.5031520
39

Lu, Q., A. K. Parlikad, P. Woodall, G. Don Ranasinghe, X. Xie, Z. Liang, and J. Schooling. (2020). Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus. Journal of Management in Engineering. 36(3).

10.1061/(ASCE)ME.1943-5479.0000763
40

Lu, Q., X. Xie, A. K. Parlikad, J. M. Schooling, and E. Konstantinou. (2021). Moving from Building Information Models to Digital Twins for Operation and Maintenance. Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction. 174(2): 46-56.

10.1680/jsmic.19.00011
41

Mahmoodian, M., F. Shahrivar, S. Setunge, and S. Mazaheri. (2022). Development of Digital Twin for Intelligent Maintenance of Civil Infrastructure. Sustainability. 14(14): 8664.

10.3390/su14148664
42

Nicał, A. K. and W. Wodyński. (2016). Enhancing Facility Management through BIM 6D. Procedia Engineering. 164: 299-306.

10.1016/j.proeng.2016.11.623
43

Opoku, D. G. J., S. Perera, R. Osei-Kyei, and M. Rashidi. (2021). Digital Twin Application in the Construction Industry: A Literature Review. Journal of Building Engineering. 40: 102726.

10.1016/j.jobe.2021.102726
44

Padovano, A., F. Longo, L. Nicoletti, L. Gazzaneo, A. Chiurco, and S. Talarico. (2021). A Prescriptive Maintenance System for Intelligent Production Planning and Control in a Smart Cyber-Physical Production Line. Procedia CIRP. 104: 1819-1824.

10.1016/j.procir.2021.11.307
45

Panetta, K. (2017). Gartners Top 10 Technology Trends 2017. Retrieved from https://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017

46

Ritto, T. G. and F. A. Rochinha. (2021). Digital Twin, Physics-Based Model, and Machine Learning Applied to Damage Detection in Structures. Mechanical Systems and Signal Processing. 155: 107614.

10.1016/j.ymssp.2021.107614
47

Seo, J., J. W. Hu, and J. Lee. (2016). Summary Review of Structural Health Monitoring Applications for Highway Bridges. Journal of Performance of Constructed Facilities. 30(4): 1-9.

10.1061/(ASCE)CF.1943-5509.0000824
48

Shafto, M., M. Conroy, R. Doyle, E. Glaessgen, C. Kemp, J. LeMoigne, and L. Wang. (2010). Modeling, Simulation, Information Technology & Processing Roadmap. Technology Area 11. Washington, DC, USA: National Aeronautics and Space Administration.

49

Shim, C. S., N. S. Dang, S. Lon, and C. H. Jeon. (2019). Development of a Bridge Maintenance System for Prestressed Concrete Bridges Using 3D Digital Twin Model. Structure and Infrastructure Engineering. 15(10): 1319-1332.

10.1080/15732479.2019.1620789
50

Sonbul, O. S. and M. Rashid. (2023). Algorithms and Techniques for the Structural Health Monitoring of Bridges: Systematic Literature Review. Sensors. 23(9): 1-29.

10.3390/s2309423037177433PMC10181214
51

Sun, L., Z. Shang, Y. Xia, S. Bhowmick, and S. Nagarajaiah. (2020). Review of Bridge Structural Health Monitoring Aided by Big Data and Artificial Intelligence: From Condition Assessment to Damage Detection. Journal of Structural Engineering. 146(5).

10.1061/(ASCE)ST.1943-541X.0002535
52

Velosa, A., Y. Natis, and B. Lheureux. (2016). Use the IoT Platform Reference Model to Plan Your IoT Business Solutions. Retrieved from https://www.gartner.com/en/documents/3447218

53

Wang, J., L. Ye, R. X. Gao, C. Li, and L. Zhang. (2019). Digital Twin for Rotating Machinery Fault Diagnosis in Smart Manufacturing. International Journal of Production Research. 57(12): 3920-3934.

10.1080/00207543.2018.1552032
54

Xu, J., N. R. Anvo, H. Taha-Abdalgadir, A. M. D'Avigneau, D. Palin, R. Wei, and I. Brilakis. (2024). Highway Digital Twin-Enabled Autonomous Maintenance Plant: A Perspective. Data-Centric Engineering. 5: 1-16.

10.1017/dce.2024.34
55

Yu, S., D. Li, and J. Ou. (2022). Digital Twin-Based Structure Health Hybrid Monitoring and Fatigue Evaluation of Orthotropic Steel Deck in Cable-Stayed Bridge. Structural Control and Health Monitoring. 29(8).

10.1002/stc.2976

Korean References Translated from the English

1

산림청 (2023). 2022년 산림과 임업 동향에 관한 연차보고서. 대전: 산림청. 3-4.

Information
  • Publisher :Korean Society of Disaster and Security
  • Publisher(Ko) :한국방재안전학회
  • Journal Title :Journal of Korean Society of Disaster and Security
  • Journal Title(Ko) :한국방재안전학회 논문집
  • Volume : 17
  • No :4
  • Pages :51-62
  • Received Date : 2024-11-09
  • Revised Date : 2024-11-18
  • Accepted Date : 2024-11-18