All Issue

2020 Vol.13, Issue 3 Preview Page

Original Article

30 September 2020. pp. 45-58
Abstract
References
1
Cruise, J. F. Singh, V. P., and Sherif, M. M. (2014). Elementary Hydraulics 1st. Cengage Learning US.
2
Iverson, R. M. (2003). The Debris-flow Rheology Myth. Debris-flow Hazards Mitigation, Mechanics, Prediction, and Assessment. 1: 303-314.
3
Iverson, R. M. and Denlinger, R. P. (2001). Flow of Variably Fluidized Granular Masses Across Three-Dimensional Terrain: 1. Coulomb Mixture Theory. Journal of Geophysical Research: Solid Earth. 106(B1): 537-552.
10.1029/2000JB900329
4
Jakob, M., Hungr, O., and Jakob, D. M. (2005). Debris-flow Hazards and Related Phenomena (Vol. 739). Berlin: Springer.
5
Jang, C. B., Choi, Y. N., and Yoo, N. J. (2017). A Study on Behavior Characteristics and Triggering Rainfall of Debris Flow. Journal of the Korean Geo-Environmental Society. 18(1): 13-21.
10.14481/jkges.2017.18.1.13
6
Jeong, S. W. (2010). Flow Characteristics of Landslides/debris Flows: Sediment Rheology and Mobility and Mobility of Landslides. Proceedings of Korean Society of Engineering Geology (KSEG) Conference 2010. KSEG, 79-80.
7
Kim, S., Paik, J., and Kim, K. S. (2013) Run-out modeling of debris flows in Mt. Umyeon using FLO-2D,  Journal of the Korean Society of Civil Engineers, 33(3): 965-974.
10.12652/Ksce.2013.33.3.965
8
Kim, S. D., Lee, H. J., and Chang, H. J. (2019). The Study for Analysis of Impact Force of Debris Flow According to the Location of Check Dam. Journal of the Korea Academia-industrial Cooperation Society. 20(1): 409-418.
9
Kim, S.-K. and Seo, H.-S. (1997). An Analysis of Debris Flow Movement Using Rheological Model. Journal of Korean Geotechnical Society. 13(5): 133-143.
10
Kim, Y. H., Jun, B. H., and Jun, K. W. (2019). Evaluation of Slope Stability of Taebaeksan National Park Using Detailed Soil Map. Journal of Korean Society of Disaster and Security. 12(2): 65-72.
11
Korea Express Corporation (2017). Risk Assessment and Prevention of Debris Flow on Expressway. Seongnam: Korea Express Corporation.
12
Korea Forest Service (2007). How Many Mountains in Korea?, Korean Mountain Statistics Representation. Daejeon: Korea Forest Service.
13
Korea Forest Service (2015). Risk Assessment of Vulnerable Areas in Debris Flow. Daejeon: Korea Forest Service.
14
Lee, D. H., Lee, S. R., Jeon, J. S., Park, J. Y., and Kim, Y. T. (2019). Estimation of Debris-flow Volumes by an Artificial Neural Network Model. 7th International Conference on Debris-Flow Hazards Mtigation.
15
Lee, J. S., Song, C. G., Kim, H. T., and Lee, S.O. (2015). Effect of Land Slope on Propagation due to Debris Flow Behavior. Korean Society of Safety. 30(3): 52-58.
10.14346/JKOSOS.2015.30.3.52
16
Lee, M. J. and Kim, Y. T. (2013). Movement and Deposition Characteristics of Debris Flow According to Rheological Factors. Journal of the Korean Geotechnical Society. 29(5): 19-27.
10.7843/kgs.2013.29.5.19
17
Ministry of the Interior and Safety (2018). Evaluation Standard of Danger for Debris Flow. Sejong: Ministry of the Interior and Safety.
18
O'Brien, J. S. and Garcia, R. (2009). FLO-2D Reference Manual. Nutrioso, Arizona. Version, 2011.
19
O'Brien, J. S. and Julien, P. Y. (1985). Physical Properties and Mechanics of Hyperconcentrated Sediment Flows. Proc. ASCE HD Delineation of Landslides, Flash Flood and Debris Flow Hazards.
20
O'Brien, J. S. and Julien, P. Y. (1988). Laboratory Analysis of Mudflow Properties. Journal of Hydraulic Engineering, ASCE. 114(8): 877-887.
10.1061/(ASCE)0733-9429(1988)114:8(877)
21
O'Brien, J. S., Julien, P. Y., and Fullerton, W. T. (1993). Two-dimensional Water Flood and Mudflow Simulation. Journal of Hydraulic Engineering, ASCE. 119(2): 244-261.
10.1061/(ASCE)0733-9429(1993)119:2(244)
22
Rickenmann, D., Laigle, McArdell, B. W., and Hübl, J. (2006). Comparison of 2D Debris-flow Simulation Models with Field Events. Computational Geosciences. 10(2): 241-264.
10.1007/s10596-005-9021-3
23
Scheidl, C., McArdell, B., Nagl, G., and Rickenmann, D. (2019). Debris Flow Behavior in Super-and Subcritical Conditions. In Association of Environmental and Engineering Geologists; Special Publication 28. Colorado School of Mines. Arthur Lakes Library.
24
Xi-lin, L. I. U. (2000). Regional Risk Assessment on Debris Flow. Journal of Natural Disasters. 9(1): 54-61.

Korean References Translated from the English

1
김성덕, 이호진, 장형준 (2019). 사방댐 위치변화에 따른 토석류의 충격력 해석에 관한 연구. 한국산학기술학회. 20(1): 409-418.
2
김승은, 백중철, 김경석 (2013). FLO-2D 모형을 이용한 우면산 토석류 유동 수치모의. 대한토목학회. 33(3): 965-974.
10.12652/Ksce.2013.33.3.965
3
김영환, 전병희, 전계원 (2019). 정밀토양도를 이용한 태백산국립공원의 사면안정성 평가. 한국방재안전학회. 12(2): 65-72.
4
산림청 (2007). 우리나라의 산은 몇 개나 될까?-산림청, 전국 산통계 발표-. 대전광역시: 산림청.
5
산림청 (2015). 토석류 취약지역 방재대책. 대전광역시: 산림청.
6
이준선, 송창근, 김홍택, 이승오 (2015). 전파면의 경사에 따른 토석류 흐름양상에 대한 연구. 한국안전학회. 30(3): 52-58.
10.14346/JKOSOS.2015.30.3.52
7
장창봉, 최영남 ,유남재 (2017). 토석류의 거동특성 및 유발강우에 관한 연구. 한국지반환경공학회. 18(1): 13-21.
10.14481/jkges.2017.18.1.13
8
정승원 (2010). 토석류의 흐름특성: 유동학의 필요성. 한국지구물리·물리탐사학회(KSEG) 2010 학술발표회. 79-80.
9
한국도로공사(2017). 공용 고속도로 토석류 위험평가 및 대책 적용방안 수립. 성남시: 한국도로공사.
10
행정안전부(2018) 토석류 위험도 평가기준. 세종시: 행정안전부.
Information
  • Publisher :Korean Society of Disaster and Security
  • Publisher(Ko) :한국방재안전학회
  • Journal Title :Journal of Korean Society of Disaster and Security
  • Journal Title(Ko) :한국방재안전학회 논문집
  • Volume : 13
  • No :3
  • Pages :45-58
  • Received Date : 2020-07-26
  • Revised Date : 2020-08-15
  • Accepted Date : 2020-09-05